Preliminary Studies on π^0 Production in the MiniBooNE Antineutrino Data

Van Nguyen Columbia University

February 14th, 2007 Happy Valentine's Day!

Generic Event Signature

Motivation for Studying NC π^0 Production

- To date, there is only one published measurement of the absolute rate of antineutrino NC π^0 production, the single largest background to future $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillation searches; this measurement was reported with 25% uncertainty at 2 GeV.
- Current theoretical models on coherent π^0 cross sections can vary by up to an order of magnitude in their predictions at low energy, the region most relevant for ν oscillation experiments.

Oscillation Search Backgrounds: NC π^0 Production

NC π^0 's can be created through resonant and coherent production:

• Resonant NC π^0 production: $\overline{v} \, \mathbb{N} \to \overline{v} \, \Delta$ $\stackrel{\downarrow}{\pi}^0 \, \mathbb{N}$

• Coherent NC π^0 production: $\overline{v} A \rightarrow \overline{v} A \pi^0$

Oscillation Search Backgrounds Cont'd

A π^0 decays promptly into two photons.

 π^0

$$\pi^0 \rightarrow \gamma \gamma$$

This event can be misidentified if there are not two resolvable tracks.

misID

 $\nu_{\rm e}$

Understanding of these events is crucial!

MiniBooNE Antineutrino Running

- Started antineutrino running in January 2006
- Has the world's largest sample of π^0 's produced by antineutrinos (~900 events)!
- Need to contend with neutrino aka "wrong-sign" (WS) background

 In antineutrino mode, neutrinos are ~30% of the total events (as opposed to neutrino mode where antineutrinos are ~2% of the total events)

Coherent NC π^0 's in ν vs. $\overline{\nu}$ Running

• 20% is coherent production

- 40% is coherent production
- "enhanced" coherent sample

Generated π^0 angular distribution for NC ν (left) and $\overline{\nu}$ (right) scattering. Here θ_{π} is the angle of the outgoing π^0 in the lab wrt to the ν ($\overline{\nu}$) direction.

π^0 Event Selection

Analysis Pre-Cuts

- Only 1 subevent in the event found by the SplitEvent algorithm
- N_{VETO} < 6, where N_{VETO} is the no. of veto hits associated with the subevent
- N_{TANK} > 200, where N_{TANK} is the no. of tank hits associated with the subevent

Analysis Cuts (using the P-fitter reconstruction package)

- R_{e} <500 cm ...cut on the electron-like radius
- $-\log(L_e/L_u)>0.05$...likelihood cut favoring the electron
- $-\log(L_e/L_{\pi})<0$...likelihood cut favoring the pion
- $50 < M_{\pi} < 500 \text{ MeV...conservative mass cut}$
- $0 < E_{\pi^0} (1.-\cos\theta_{\pi^0}) < 700 \text{ MeV}$
- nuance=13,15 ...resonant π^0 production from antineutrinos
- nuance=96 ...coherent π^0 production
- nuance $\neq 13,15,$ or 96 ... background
- nuance=6,8 ...resonant π^0 production from neutrinos (WS)

Preliminary Studies

We will see the following:

- There are indeed π^0 's produced in our antineutrino data
- There is good agreement between data and MC
- Kinematic distributions are what we expect
- There is clear evidence for antineutrino NC coherent $\boldsymbol{\pi}^{\scriptscriptstyle 0}$ production

Note:

The data is from Jan.–Dec. 2006 and the MC is from the May 06 Baseline (no dirt)

π⁰ Mass Peak

π⁰ Mass Peak

π⁰ Momentum

 $(50 \text{ MeV} < m_{\pi^0} < 500 \text{ MeV})$

π⁰ Momentum

 $(100 \text{ MeV} < m_{\pi^0} < 170 \text{ MeV})$

π⁰ Momentum

(50 MeV<m $_{\pi^0}<$ 500 MeV; reweighted MC)

$$\cos\theta_{\pi^0}$$

 (θ_{π^0}) is the angle of the outgoing π^0 in the lab wrt to the $\overline{\mathcal{V}}$ direction)

Shape Comparison

 E_{π} <300 MeV

 $E_{\pi}>300 \text{ MeV}$

$$E_{\pi^0}(1-\cos_{\pi^0})$$

$$E_{\pi^0}(1-\cos_{\pi^0})$$

No numubar COH contribution

Summitry

We saw the following:

- There are indeed π^0 's produced in our antineutrino data
- There is good agreement between data and MC
- Kinematic distributions are what we expect
- There is clear evidence for antineutrino NC coherent $\pi^{\scriptscriptstyle 0}$ production

Up next:

- Construct template fits to the $E_{\pi}(1-\cos\theta_{\pi})$ data in which the coherent and resonant contributions vary separately. This will be a 2-D fit that includes fitting the mass and WS background.
- Use updated MC (with fallen absorber plates) when they are available (coming soon!)
- Include systematic errors